
Modelling association football scores 
by M. J. MAHER* 

Abstract Previous authors have rejected the Poisson model for association football scores in 
favour of the Negative Binomial. This paper, however, investigates the Poisson 

model further. Parameters representing the teams’ inherent attacking and defensive strengths are 
incorporated and the most appropriate model is found from a hierarchy of models. Observed and 
expected frequencies of scores are compared and goodness-of-fit tests show that although there 
are some small systematic differences, an independent Poisson model gives a reasonably accurate 
description of football scores. Improvements can be achieved by the use of a bivariate Poisson 
model with a correlation between scores of 0.2. 

Key Words: Poisson goals distribution, iterative maximum likelihood. 

1 Introduction 

MORONEY (1951) demonstrated that the number ofgoals scored by a team in a football 
match was not well fitted by a Poisson distribution but that ifa “modified Poisson” (the 
Negative Binomial, in fact) was used, the fit was much better. REEP, POLLARD and 
BENJAMIN (1971) confirmed this, using data from the English Football League First 
Division for four seasons, and then proceded to apply the Negative Binomial distribu- 
tion to other ball games. The implication of this result is that the same Negative Bino- 
mial distribution applied to the number of goals scored by a team, regardless of the 
quality of that team or the quality of the opposition. In fact in an earlier paper, REEP and 
BENJAMIN (1968) remarked that “chance does dominate the game”. HILL (1974) was un- 
convinced by this and showed that football experts were able, before the season started, 
to predict with some success the final league table positions. Therefore, certainly over a 
whole season, skill rather than chance dominates the game. This would probably be 
agreed by most people who watch the game of football; that whilst in a single match, 
chance plays a considerable role (missed scoring opportunities, dubious offside deci- 
sions and shots hitting the crossbar can obviously drastically affect the result), over 
several matches luck plays much less ofa part. Teams are not identical; each one has its 
own inherent quality, and, surely then we should expect that when a good team is play- 
ing a weak team, the good team will have a high probability of winning and scoring 
several goals. By using data from the whole or just a part of the season, these inherent 
qualities of the teams in a league can be inferred by, for example, maximum likelihood 
estimation (as in THOMPSON (1975)) or by linear model methodology (as in HARVILLE 
(1977) and LEEFLANG and VAN PRAAG (1971)). 

2 The Model 

There are good reasons for thinking that the number of goals scored by a team in a 
match is likely to be a Poisson variable: possession is an important aspect of football, 
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and each time a team has the ball it has the opportunity to attack and score. The proba- 
bility p that an attack will result in a goal is, of course, small, but the number of times a 
team has possession during a match is very large. If p is constant and attacks are inde- 
pendent, the number of goals will be Binomial and in these circumstances the Poisson 
approximation will apply very well. The mean of this Poisson will vary according to the 
quality of the team and so if one were to consider the distribution ofgoals scored by all 
teams, one would have a Poisson distribution with variable mean, and hence something 
like the Negative Binomial observed by MORONEY (1951) and REEP, POLLARD and 
BENJAMIN (1971) could arise. 

Therefore, in this paper, at least for the present, an independent Poisson model for 
scores will be adopted. In particular, if team iis playing at home against team jand the 
observed score is (xu, yu),  we shall assume that X,, is Poisson with mean a,Jj, that Y,, is 
also Poisson with mean y, d,, and that Xu and Yu are independent. Then we can think of a, 
as representing the strength of team i’s attack when playing at home& the weakness of 
teamj’s defence when playing away, y, the weakness of team i ’ s  defence at home and d, 
the strength of teamj’s attack away. In a league with 22 teams there are 88 such param- 
eters (and 924 observations on the scores); however ifall the a’s are multiplied by a fac- 
tor kand all theg’s divided by k, all the a,& products are unaffected and, therefore, in 
order to produce a unique set of parameters the constraint 

may be imposed. In the same way the constraint 

C y i = c d i  
i I 

may be imposed and so only 86 independent parameters need to be specified. Since the 
- X and are assumed to be independent of each other (representing separate “games” at 
the two ends of the pitch), the estimation of the _a a n d 4  will be entirely from the gand 
the estimation of the y and _S by means of the y alone. 

For the home teams’ scores, therefore, the log likelihood function is: 

i j + i  

Therefore, 

a log L xii 
-= aai j + i  c (-A+;) 

and so the maximum likelihood estimates i,i satisfy: 
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An iterative technique, such as NEWTON-RAPHSON, enables these MLEs to be deter- 
mined. One simpler scheme which works well is to be use the 6’s to estimate thej’s  and 
then to use the g’s to estimate the 63, and so on alternately. Good initial estimates can 
be gained by regarding the denominator terms in the expressions above as summations 
over all teams: that is, 

Ci= 1 xu/,& and j j=  1 xu/&, where &=I 1 xu. 
j +  i i+. j i j=ei 

In a similar way, using the yo, and 3 may be found. 

3 Results 

Data were obtained, in a convenient matrix form, from the Rothmans Football Year- 
book (1973, 1974, 1975). This gave 12 separate leagues (the four English Football 
League Divisions for each of three seasons) for analysis. The MLEs of the four types of 
parameterg,J,e,andJare shown in Table 1 forjust one data set: Division 1 in the season 
197 1 - 1972. 

Table 1. Maximum likelihood estimates of the parameters for Division 1 1971-1972. 

home away home away 
attack defence defence attack 
a B Y 6 

Arsenal 1.36 1.03 0.64 1.06 
Chelsea 1.55 1.18 0.97 0.83 
Coventry City 1.05 1.66 1.12 0.84 
Crystal Palace 0.99 1.28 1.49 0.65 
Derby County 1.62 0.89 0.50 1.24 
Everton 1.06 1.17 0.81 0.44 
Huddersfield Town 0.46 1.37 1.06 0.74 
lpswich Town 0.72 1.27 0.93 0.98 
Leeds United 2.02 0.82 0.49 0.91 
Leicester City 0.69 1.31 0.54 1.10 
Liverpool 1.78 0.54 0.78 0.78 
Manchester City 1.82 1.17 0.75 1.40 
Manchester United 1.49 1.35 1.31 1.49 
Newcastle United 1.14 1.29 0.88 0.93 
Nottingham Forest 0.98 1.96 1.43 1.10 
Sheffield United 1.49 1.31 1.28 1.09 
Southampton 1.21 1.98 1.38 1.05 
Stoke City 0.99 1.17 1.20 0.64 
Tottenham Hotspur 1.71 1.12 0.63 0.87 
West Bromwich Albion 0.84 1.16 1.13 0.99 
West Ham United 1.18 1.22 0.92 0.78 
Wolverhampton Wanderers 1.34 1.30 1.15 1.48 

The question arises of whether all these parameters are necessary for an adequate des- 
cription of the scores. Intuitively it seems that there must be real differences between 
teams, but are these differences more apparent in the attacks or defences, and is it really 
necessary to have separate parameters for the quality of a team’s attack at home and 
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away? Consideration of such questions leads to a possible hierarchy of models which 
could be tested. At the bottom is model 0 in which aj = a,Ji =J, yi = yand 6, = 6Vi; that 
is, all teams are identical in all respects. At the top is model 4, previously described, in 

which all four types of parameter are allowed to take different values for the different 
teams. The hierarchy is shown in Table 2. In this the notation is designed to show 
whether a set of parameters (such at theJ) are free to take different values for the dif- 
ferent teams (shown asg,)  or whether the same value applies to all teams (shown asJ). 

Table 2. Hierarchy of models, with changes in the value of twice the maxirnised log likelihood 
shown for Division I 1971-1972 

~ ~ ~~ 

Model 4 

Models 3C, 3D 

Model 2 

Models lA,  1B 

Model 0 

In model 0 there are four parameters but in order to have a unique set ofparameter esti- 
mates, the constraints a =J and y = 6 are imposed (or, equivalently, a =J, y = kJ and 
6 = ka), giving just two independent parameters. Details of the constraints imposed in 
the other models are as follows: 

Model IA  

Model I B  

Model 2 
Model 3C 
Model 30 
Model 4 

6, = a, ,B, =J, y ,  = y V i ;  Za, = a,. Therefore, there are n + 1 independent 
parameters (where n is the number of teams in the league). 
yI =8,, a, = a, 8, =J V i ;  Za, = ZJl . Again, there are ( n  + 1) independent 
parameters. 
6, = ka, , y ,  = kJ1 V i ;  Za, = Z., . There are 2n independent parameters. 
S, = a, V i ;  Za, = ZJ,. 3n - 1 independent parameters. 
y ,  =J, V I  ; Zal = ZJ, . Again, 3n - 1 independent parameters. 
Za, = al and ZyI = 2 3 , .  Therefore, there are 4n - 2 independent param- 
eters. 

It can be seen, therefore, that moving up one level in the hierarchy of models leads to 
the introduction of (n - 1) further parameters. Under the null hypothesis that these 
extra parameters are unnecessary, 2 logel will be asymptotically Xj- I distribution by 
the usual likelihood ratio test, where logelis the increase in the log likelihood in moving 
from one model to the other. 
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For Division 1 in the season 1971-1972 the changes in the value ofthe maximised log 
likelihood when moving from one model to another are shown in Table 2 (n=22; 
X.;5(21) = 32.7 and X.$(21) = 38.9). 

This table shows that when inequality of the ai is allowed (moving from model 0 to 
model 1A or moving from model 1B to model 2), a highly significant increase in the log 
likelihood results. Similarly, when inequality of theJi is allowed (model 0 to lB, or 1A 
to 2), again the log likelihood increases very significantly. When the di are freed from 
being proportional to the ai (model 2 to 3D or 3C to 4), a marginally significant increase 
in the log likelihood is obtained. However, when the yiare freed from their linking with 
the&, no significant increase results. It should be noticed that the order in which the 
freeing of these parameters occurred had virtually no effect on the increase in the log 
likelihood due to each one; this was true for all the twelve data sets. Therefore, it is pos- 
sible to associate an increase in the log likelihood with each of the four types of param- 
eters, and, in parallel with the ideas of linear models in which factors are introduced into 
the model one at a time, the “inclusion of I”, for example, means the freeing of the yi  
from their linking with thepi.  Table 3 shows the increases in log likelihood due to the 
inclusion of each of the four types of parameter, for each of the twelve data sets. There 
are 22 teams in divisions 1 and 2 and 24 teams in divisions 3 and 4. The numbers of 
degrees of freedom, therefore, in the asymptotic X 2  distribution for 2 logelare 21 and 23 
respectively. 
Overall, then, it can be seen that the parameters gandlshould certainly be included in 
the model but the parameters yand _S need not be included. (Not only can the null hypo- 
theses not be rejected in these latter cases, but they appear perfectly consistent with the 
data.) This means that a single parameter ai can be used to describe the quality of team 
i ’ s  attack, and the parameter& to describe the weakness of the team’s defence, whether 
the team is playing at home or away. So although home ground advantage is a highly sig- 
nificant factor, it applies with equal effect to all teams, and each team’s inherent scoring 
power is diminished by a constant factor when playing away. 

Table 3. Increase in log likelihood due to inclusion of each of the four types ofparameter in the 
model 

season division - a B Y - 6 
1971-1972 1 37.7** 35.7** 8.6 17.7* 

2 23.4** 32.4** 8.7 6.1 
3 40.6** 28.1** 11.5 19.7* 
4 29.4** 34.2** 12.5 11.0 

1972-1973 1 24.8** 7.1 8.8 8.2 
2 23.2** 17.9* 3.9 13.2 
3 27.8** 18.4* 12.3 12.1 
4 26.3** 30.2** 8.9 15.0 

1973- 1974 1 
2 
3 
4 

12.5 19.5** 14.8 10.6 
19.8** 20.1** 15.1 10.2 
23.4** 39.9** 13.5 14.9 
3 1 .O** 28.4** 8.5 13.0 

* indicates a significant increase at the 5% level 
** indicates a significant increase at the 1% level 
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In the light of the results above, then, Model 2 was adopted as being the most appro- 
priate, and further analyses were made of its adequacy as a description of the mech- 
anism underlying football scores. 

4 Goodness-of-fit-tests 

For a match between team iand team j the MLEs from model 2 may be used to estimate 
f lu and A, , the means of Xu and Yti . Since X, and Yu are assumed to be Poisson and inde- 
pendent, the probabilities that Xu= xand Y, = ymay be easily calculated. By repeating 
this for all pairs of i andj, the expected score distributions may be found and compared 
with the observed score distributions. For Division 1 in the season 1971-1972, for 
example, these observed and expected frequencies are shown in Table 4. 

Table 4. Observed and expected frequencies of home and away scores for Division 1 1971-1972 

home away 

no. of goals obs. exp. obs. exp. 

0 117 111.2 184 189.3 
1 127 144.6 157 159.5 
2 115 106.1 88 15.9 
3 66 58.0 30 26.9 

234 31 42.1 3 10.5 
X 2  = 4.90 x 2  = 7.79 

For the fitted model 2 the MLEs of the parameters are: 

J*i i * j  
Vi, j 

(1 + i2) Zjj jJ= (1 + i2) 1 i?i 
ai = 

and 

z: L Yu 

c c xu 
- r j * i  k 2 = -  

i j * i  

It follows from this that 

and that 

which means that the sum of the means of the fitted Poisson distributions is equal to the 
observed numbers of goals scored. The estimation of the parameters gives rise, there- 
fore, to one linear constraint on the expected frequencies in each of the two X 2  good- 
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ness-of-fit tests in Table 4. The resulting statistics will be approximately X i  distributed 
under the hypotheses that home and away teams’ scores are Poisson distributed. This 
was repeated for each of the other eleven data sets, and the resulting X 2  statistics are list- 
ed in Table 5. 

Table 5. Values of the X 2  statistic for home and away teams’ scores for the independent Poisson 
model 

season division 

x 2  values 

homes aways 

1971 -1972 4.90 
5.71 

10.05* 
4.62 

7.79 
1.08 
8.96* 
1.07 

1972-1973 6.08 
3.44 
4.94 
0.78 

13.4 1** 
9.77* 
4.31 
3.22 

1973-1974 1 7.91* 1.33 
2 1.97 1.12 
3 0.89 5.28 
4 3.61 1.92 

5% level 7.81 
1% level 11.3 critical values 

* indicates a significant value at the 5% level 
** indicates a significant value at the 1% level 

The case where the model would be rejected are shown by an asterisk. For the home 
teams’ scores there are two such cases and for the away teams’ scores there are three. 
Overall, then, the Poisson model may be regarded as acceptable, although with some 
slight doubt. If the observed and expected frequencies are compared for each of the 
twelve data sets, some small but systematic differences can be seen. The overall 
observed and expected proportions are: 

HOME SCORES 

no. of goals 0 1 2 3 2 4  
observed 0.217 0.321 0.254 0.130 0.078 
expected 0.230 0.318 0.238 0.128 0.086 

AWAY SCORES 

no. of goals 0 1 2 3 2 4  
observed 0.388 0.371 0.177 0.051 0.014 
expected 0.406 0.352 0.166 0.056 0.020 

The model underestimates the number of occasions on which one and two goals are 
scored, and overestimates the number oftimes that 0 or 4 goals are scored. This effect 
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can be seen in each of the twelve data sets. The differences are small and over just one 
season do not seriously inflate the X value, but if the observed and expected frequen- 
cies for all twelve seasons are added the values of the X z  statistics (16.2 and 28.8 for 
home and away scores respectively) would lead to clear rejection of the model. The dis- 
tribution of the number of goals scored by a team in a match is very close to a Poisson 
distribution, then, but is slightly “narrower”. This might seem to conflict with MORO- 
NEY’S (1951) and REEP and BENJAMIN’S (1968) conclusion which was that a distribution 
which was wider (in terms of the variance to mean ratio) than the Poisson was required; 
the Negative Binomial was their fitted distribution. However, in both these other works 
a single distribution was fitted to scores from all matches, whereas here each match has 
a different fitted Poisson distribution. 

5 A bivariate Poisson model 

There is no shortage of possible explanations, of course, for the small discrepancy be- 
tween the independent Poisson model and the data; in fact it is perhaps fairer to say that 
it is surprising that such a simple model comes so close to explaining the data so fully! A 
match does not consist of two independent games at opposite ends of the pitch; to the 
teams concerned, the result is all important, and so, for example, ifa team is losing with 
ten minutes left to play, it must take more defensive risks in order to try to score. There- 
fore, an examination of the distribution of the difference between the teams’ scores, 
2” = Xu - Yo might be revealing. Table 6 shows the observed and estimated frequencies 
for Z under model 2 for Division 1 in 1971-1972. 

Table 6. Observed and estimated frequencies for Z, the difference in the teams’ scores, for 
Division 1 in 1971-1972, for (i) the independent Poisson model and (ii) the bivariate 
Poisson with e = 0.2 

Z ( - 3  - 2  - 1  0 + I  + 2  + 3  + 4  ) 5  
observed 8 26 72 129 105 69 31 16 6 
estimated (e=O) 14.4 30.3 69.8 113.0 104.9 68.7 35.8 15.8 9.3 
estimated (e=0.2)  9.9 25.3 68.0 126.2 111.7 67.7 32.6 13.4 7.1 

In this it can be seen that the number of drawn matches (Z= 0) is a little underestimat- 
ed. This is a systematic feature noted in all twelve data sets. The X 2  goodness-of-fit 
statistics are shown in Table 7; four of the twelve are significant at the 5% level, whilst 
several others approach this. Only one of the twelve has a value of the X 2  statistic which 
is less than the expected value of 7. (The number of degrees of freedom is reduced to 7 
because of the linear constraint on the expected frequencies resulting from the estima- 
tion of the a’s andJ’s.) This suggests that there may be some correlation between the X,, 
and Yu. A bivariate Poisson model was tried; in this the marginal distributions are still 
Poisson with means f l u (  = aiJj)  and ,lo(= k2ajJi)  but there is a correlation of e be- 
tween the scores. One way of thinking of such a bivariate Poisson distribution is that 
Xu = Uti + W, and Yti = Vo + Wu where U,, Vu and W” are independent Poisson with 
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means of bu - qu),  ( A ,  - qu) and qii respectively, with qu (= ~,/m being the co- 
variance between x, and Yu. 
A range of values of p was tried and the most appropriate seemed to be around 0.2. In 
computing the expected frequencies for Z, the values of the C ’ s , j 9 s  and used were 
those found from the fitting of the independent Poisson model. The terms in the Pois- 
son bivariate probability function can be calculated by the following recursive relation- 
ship: 

m = e x p  ( - p - A - q )  
. P x y = b -  ‘ I ) P x - I . ” + ‘ l P x - I y - l  

Y PXY = (A - d P X Y  - I + VPx-  1 y - 1 

Table 7.  Values of the X 2  goodness-of-lit statistic for Z, th8 difference between the teams’ scores, 
for (i) the independent model and (ii) the bivariate Poisson model with e = 0 . 2  

season 

~ ~ 

x 2  values 

division independent model bivariate model 

197 1-1972 1 
2 
3 
4 

9.67 
16.42* 
10.87 
12.99 

1.86 
6.50 
3.94 
5.75 

1972-1973 1 15.51* 4.77 
2 13.70 11.98 
3 4.79 2.50 
4 15.30* 8.27 

1973-1974 1 16.47* 9.08 
2 9.76 12.29 
3 13.53 8.00 
4 10.36 5.40 

5% level 
1 %  level critical values 14.1 

18.5 
12.6 
16.8 

The results of fitting this bivariate Poisson model are shown in Tables 6 and 7, where it 
can be seen that the introduction of the extra parameter Q has led to a considerable 
improvement in the fit. The X 2  statistics in Table 7 are not only non-significant but are 
fairly representative values from a Xi distribution. (It has been assumed that the fitting 
of the extra parameter e will be roughly equivalent to the imposition of another linear 
constraint on the expected frequencies, although in fact the same value of e has been 
applied to all the twelve data sets). A bivariate Poisson model with correlation ofabout 
0.2, therefore, would seem to give a very adequate fit to the differences in scores. 

6 Summary 

Previous work on the distribution of scores in football matches has rejected the Poisson 
model in favour of the Negative Binomial. This work, however, has not allowed for the 
different qualities of the teams in a league. The first model investigated here assumes 
that the home team’s and aways team’s scores in any one match are independent Pois- 
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son variables with means a,Jj and yiSj ,  where the parameters 44, y and _S represent the 
qualities of the teams attacks and defences, in home and away matches. Maximum 
likelihood estimation of these parameter shows that only the _a and4 are needed, show- 
ing that the relative strength of teams’ attacks is the same whether playing at home or 
away; the same applies to the defences. 

When this model is aplied to each of the twelve data sets and observed and expected 
score distributions are compared by means of a X 2  test, nineteen out of the twenty-four 
cases give a non-significant result at the 5% level. Overall, then, the independent Pois- 
son model gives a reasonably good fit to the data. The deviations from this model are 
small but consistent in each of the data sets, there being slightly fewer occasions ob- 
served than expected on which no goals or a large number of goals are scored. When the 
differences in scores are investigated however, the lack of fit of the model is rather more 
serious and suggests that the independence assumption is not totally valid. A bivariate 
Poisson model was then used to model this dependence between scores and this 
improved the fit considerably for the differences in scores. The correlation coefficient 
between home teams’ and away teams’ scores is estimated to be approximately 0.2. 
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